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The paper develops a procedure for finding a discrete-valued Markov chain whose sample paths approximate well those of a 
vector autoregression. The procedure has applications in those areas of economics, finance, and econometrics where 

approximate solutions to integral equations are required. 

1. Introduction 

There is interest in economics, finance, and econometrics in the solutions to functional equations 
where the arguments of the solution functions are the values of an autoregressive process. A typical 
problem is to characterize the price of an asset, where the law of motion for the dividend is a 
logarithmic AR(l) process. For example, with an additively separable intertemporal utility function 
the functional equation for the asset price p is 

(1) 

where u’(h) is the marginal utility of consumption, h is the dividend, p is the subjective rate of 
discount, and F( h’ 1 h) is the conditional distribution of the dividend. The law of motion for the state 
variable y = log(h) is y’ = Xy + C, where c is white noise. Under regularity conditions (1) admits a 
unique solution for the asset price as a function p(v) of the log of the dividend. Such pricing 
functions are studied by Lucas (1978), Brock (1982) and others. 

Generally the solutions to (1) are not available in an analytically simple closed form. Instead, the 
solutions are given as the limit of a sequence of computationally difficult iterations motivated by 
contraction mapping theorems. However, there are instances where calculation of the exact solution - 
or a good approximation to it - is important. For example, Prescott and Mehra (1985) examine the 
quantitative aspects of asset pricing in their study of the puzzle of ‘high’ equity returns, while 
Donaldson and Mehra (1984) study the qualitative features of multivariate asset pricing functions. 
The strategy adopted in these papers and in other work is to use a finite-state discrete Markov chain 
for the state variables and to restrict the number of possible values of the state variables to be very 
small, usually only two or three. In the discrete case the problem of solving the functional equation 
(1) becomes the simpler problem of just inverting a matrix. 

If the range space of state variables is small, then one can find ad hoc, though presumably 
‘realistic’ numerical values for the transition probabilities and the state variables. However, the 
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difficulty with using a small state space is that one is never sure that unusual and interesting 
characteristics of the solution are not simply artifacts of the coarseness of the state space. This 
suggests using finer state spaces. Of course, the size of the matrix to be inverted will become much 
larger, but with the large-scale computational resources that are, or will soon be available [National 
Science Foundation (1984)], the inversion of very large matrices is practicable. 

This paper develops a method for choosing values for the state variables and the transition 
probabilities so that the resulting finite-state Markov chain mimics closely an underlying continuous- 
valued autoregression. The motivation for the method is the well-known fact that the statistical 
properties of many economic time series are captured adequately by vector autoregressions, after an 
adjustment for trend. Thus it is possible to use the method to calculate explicitly the solutions to 
functional equations like (1) using dynamics for the state variables that are close to those actually 
observed in the economy. In fact, as the state space becomes finer and finer the solution to the 
functional equation will, under regularity conditions, become arbitrarily close to the solution for the 
continuous case. This is the Kantorovich approach [Wouk (1979, pp. 120&142)] to solving functional 
equations. Below, evidence is presented indicating that the approximation error from the method 
should be small for moderate sized state spaces. Also, the method works well in an ongoing project 
[Tauchen (1985)] that investigates the small sample properties of generalized method of moments 
estimator [Hansen (1982)]. 

2. The scalar case 

Let Y, be generated by the autoregressive scheme, 

Y, = AY,-I + et, (2) 

where E, is a white noise process with variance 0,‘. Let the distribution function of cr be Pr[c, < U] = 
F(u/u,), where F is a cumulative distribution with unit variance. Let jjl denote the discrete-valued 
process that approximates the continuous-valued process (2) and let y’ <y’,. . . , < j” denote the 
values that jr may take on. A method for selecting the values y’ is to let YN be a multiple m of the 
unconditional standard deviation Us = (a,‘/(1 - X2))‘12. Then let y’ = -yN, and let the remaining be 
equispaced over the interval [y’, yN]. 

The method for calculating the transition matrix plk = Pr[ jt = jh 1 j,_ , = j ‘1 follows. Put w = jh - 

Y -k-‘. For each j, if k is between 2 and N - 1, set 

P,~ = Pr[ yk - w/2 < XyJ + tr <yl‘ + W/2] 

=F y”-hyJ+ww/2 _F yk-hy’-w/2 

i 0, i i 0, i? 

otherwise, 

P,I =F 
y’ - xy’ + w/2 

and 
0, 

P,~ = 1 - F 
! 

Y -N - xyi - w/2 

0, 

The rationale for this assignment of the transition probabilities can be understood by considering a 
random variable of the form v = AjjJ + c where XYJ is fixed and c is distributed as c,. Then the 
assignments (3) for p/k make the distribution of jjr conditional on jj,,-, =y’ be a discrete approxima- 
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Table 1 

Case 
number 

Number of 
grid 
points 

N 

Continuous process 

x 0, 

(1) 9 0.10 0.101 0.100 0.103 
(2) 9 0.80 0.167 0.798 0.176 
(3) 9 0.90 0.229 0.898 0.253 
(4) 5 0.90 0.229 0.932 0.291 

tion to the distribution of the random variable U. If the partitioning of the real line formed by the Jk 

Discrete process 

x oi 

is reasonably fine, then the conditional distribution of jr given j,_, = J’ will approximate closely in 

the sense of weak convergence that of y, given y,-, = XJJ. 
It is recognized that other integration rules, e.g., Gaussian quadrature, may lead to a placement of 

the grid points that in principle is more efficient than the equispaced scheme outlined above. The 
advantages of the above scheme, however, are computational speed and numerical stability, especially 
in the multivariate case given below. A rule based on Gaussian quadrature would essentially use the 
method of moments to determine the grid points and the transition probability matrix. This would 
necessarily entail the inversion of very large Vandermonde matrices, a problem which is notoriously 
time consuming and numerically unstable. The above scheme, on the other hand, can be coded very 
easily and the approximating Markov chains have been found to be quickly computable for a large 
number of sets of parameter values for the underlying autoregression. 

To assess the adequacy of the approximation (3) note that the discrete process j, admits a 
representation of the form, j, -xj,-, = Z,, with cov(c,, jr;-,)= 0, where x = COV(~~~;, jr_l)/var(jt), 
and oc2 = (1 -x2) var(j,). The parameters x and uz are functions of the second moments of the j( 
process, and these moments can be computed from the transition matrix and the { 7’). Table 1 shows 
the induced population statistics x and yF for a range of values for X and N with of = 0.1. 

The transition probabilities were computed under a normality assumption for E, and using the 
value m = 3 for determining the grid width. The approximation of x and oF to h and Us is clearly 
adequate for most purposes when N = 9. Experimentation showed that the quality of the approxima- 
tion remains good except when X is very close to unity. 

Monte Carlo studies showed that fitting standard linear time series models to the discrete-valued 
approximating process j, gives results very similar to what one would expect if the models had been 
fitted to realizations of the continuous-valued process y, itself. Generating 51 pseudo observations on 
.i; for the parameters in case no. (2) in table 1 and then fitting linear autoregressive models to these 
data gives 

J = 0.03 + 0.78 j,pl, 
(0.02) (0.09) 

s 2 = 0.0095, NOBS= 50, 

_F~= 0.03 + 0.84 j(;,, - 0.08 j,)r2, 
(0.02) (0.15) (0.14) 

s2=0.0096, NOBS=49, 

(44 

where standard errors are in parentheses. These regressions are about what one would expect to get if 
the continuous-valued process yt had been simulated. Interestingly, Kolmorgov-Smirnov tests accept 
normality of the residuals, indicating that the distance in the K-S metric between the error 
distribution and the normal distribution is not large. 
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3. The vector case 

Suppose the vector process is 

Y, =A.Y-, + er3 var(c,) =Z,, a diagonal matrix, (5) 

where y, is an M X 1 vector, A is an M X M matrix, and E, is an M x 1 vector white noise process. It 
is assumed that the elements E,, of et are mutually independent with distribution Pr[e,, < u] = 
F,(u/a(c,)), where 6 is a standardized distribution function. After taking appropriate linear 
combinations any VAR model can be put in the form (5). Assume that after taking such linear 
combinations the elements of C, are also independent. 

Let jj, denote the approximating discrete-valued vector Markov chain for y, in (5). Each 
component J,:, takes on one of N, values: y,r CT,* < . . < J,Ns. As in the univariate case, J,r and y,NJ 
are set to minus and plus a small integer m times the unconditional standard deviation of y,,. The 
remaining J,’ satisfy J,‘+ ’ = :’ J, + w,, I= 1, 2 ,..., N, - 1, where w, = 2ma(y,)/(N, - 1). The a(~,) are 
the square roots of the diagonal elements of the matrix ZY that satisfies Z’,. = AZ,.A’ + Z:,, which can 
be found by iterating Z.,(Y) = AZ.,(r - 1)A’ + .Z:,, with convergence as r + 00 guaranteed so long as 

(5) is stationary. 
There are N* = N, . N, . . . . .NM possible states for the system. Enumerate these states using the 

index j=l, 2,..., N* as a label for the states. Let i(j) be an M x 1 vector of integers associated 
with state j such that when the system is in state j at time I- 1 the components J,,,_, assume the 

values J,:,t_, =J,p, wherep=i,(j),for i=l,2 ,..., M. 

To calculate transition probabilities pJk let J(j) be the M x 1 vector of values for the J’s when 
the system is in state j, and put p = AJ( j). For each i let h,( j, I) = Pr[J,, =y/ 1 state j at t - 11 for 
1 < I < N,, which, analogously to (3) is taken to be 

h,(j, I)=~(~~-~,+w,/2)-F;(_$-~,-w,/2) if 2</<N,-1, 

=F;W -!%+w,/2) if /=l, (6) 

= 1 - E; ( y,N, - p, - w/2) if I= N,. 

Given the h’s the transition probabilities p( j, k) = Pr[in state k ]in state j] are, by independence of 
the C’S, the products of the appropriate h’s, 

p(j, k)=[filh,(j,ii(k)) forj, k=1,2 ,..., N*. 

Using this method a discrete approximation was taken to the process 

Y,, = 0.70~,.,-, + 0.30~2,,+1 + 61~~ y2, = 0.20~,.,-, + 0.50~~~1 + ~2~. (7) 

where e,, and c2( are iid normal (0, 0.1) random variables. The unconditional covariance matrix of 
this y, process is 

Z = 0.332 
Y [ 

0.126 
0.126 1 0.185 ’ (8) 

The N, were each set to nine, yielding 81 states for j,:- The values 7: were computed with m = 3 



standard deviations. As in the univariate case it is possible to check the accuracy of the approxima- 

tion by finding the induced representation ,Ff = xj,_, + ?,, where A= (E[_~,~,‘._,])(E[~,i;,,~,‘~,])- ‘, 
with the expectations computed using the transition matrix. In this case, 

0.299 0.373 0.139 = 0.200 0.499 1 ’ =_, ’ 0.139 0.200 1 (9) 

The elements of Aare very close to the corresponding autoregressive parameters in (7). though those 
of ,Z? are not quite as close to those of 2, in (8). Experimentation showed that increasing moderately 
the number of grid points N, often improved 

Generating 51 observations on this 3, and 

.F,, = 0.11 + 0.61 j,,,_, + 0.34 A,+,, 
(0.06) (0.11) (0.17) 

.P12, = 0.07 + 0.16 j,,,p, + 0.44 j2,,_,, 
(0.05) (0.08) (0.13) 

the accuracy of Zi. 
fitting a VAR. to’ these data gives 

s2 = 0.15, NOBS= 50, 

s2 =0.09, NOBS= 50. 

Comparing the estimates here with (7)-(9) shows that the discrete Markov chain imitates quite well 
the statistical properties underlying a first-order vector process. 

4. Conclusion 

This paper has developed a method for finding a discrete Markov chain that approximates in the 
sense of weak convergence a continuous-valued univariate or multivariate autoregression. The method 
should be useful in both economics and finance where discrete state spaces are used for finding 
numerical solutions to integral equations. 
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