The Nash bargaining solution:
This is referred to the axiomatic approach to bargaining. The reason is that Nash was interested in finding a solution with particular properties to a bargaining problem. Let us first define the "problem" and the properties that the "solution" must have. There are two agents ${ }^{1}, j=1,2$, with utility functions u_{j}. There is an arbitrary set of outcomes $A . D$ is the outcome in case the agents cannot reach an agreement (disagreement or threat point). Define $S=\left\{\left(u_{1}(a), u_{2}(a)\right), a \in A\right\}$ and $d=\left(d_{1}, d_{2}\right)$, where $d_{j}=u_{j}(D)$. Suppose that S is compact and convex and that $d \in S$. Also assume that $\exists s \in S$, such that $s_{j}>d_{j}, \forall j=1,2$.

$$
(S, d) \text { is the bargaining problem }
$$

$f: \quad(S, d) \longrightarrow S$ is a solution to (S, d)
Nash was looking for a "solution" with the following properties:

- (A1) Invariance to utility choices:

Given (S, d) and $\left(S^{\prime}, d^{\prime}\right)$ defined by $s_{j}^{\prime}=\alpha_{j} s_{j}+\beta_{j}$ and $d_{j}^{\prime}=\alpha_{j} d_{j}+\beta_{j}$, then $f_{j}\left(S^{\prime}, d^{\prime}\right)=\alpha_{j} f_{j}(S, d)+\beta_{j}$

- (A2) Symmetry:

If $d_{1}=d_{2}$ and $\left(s_{1}, s_{2}\right) \in S \Longleftrightarrow\left(s_{2}, s_{1}\right) \in S$, then $f_{1}(S, d)=f_{2}(S, d)$

- (A3) Independence of irrelevant alternatives:

If (S, d) and $\left(S^{\prime}, d\right)$ satisfy $S \subset S^{\prime}$ and $f\left(S^{\prime}, d\right) \in S$, then $f(S, d)=f\left(S^{\prime}, d\right)$

- (A4) Pareto efficiency:

Given (S, d), if $s \in S$ and $s^{\prime} \in S$ and $s_{j}^{\prime}>s_{j}, \forall j=1,2$, then $f(S, d) \neq s$
Nash (1950) showed that the unique solution to this problem is ${ }^{2}$:

$$
\begin{equation*}
f(S, d)=\underset{s_{1} \geq d_{1}, s_{2} \geq d_{2}}{\operatorname{Arg} \max }\left(s_{1}-d_{1}\right)\left(s_{2}-d_{2}\right) \tag{1}
\end{equation*}
$$

To sketch the proof, it will be useful to draw a graph. By $(A 1)$, one can choose the set of possible outcome S_{1}, such that $d=(0,0)$ (normalization of the utility functions). Denote by S_{2} the intersection of S_{1} and the positive quadrant. Let $\left(u_{1}^{*}, u_{2}^{*}\right)=\underset{s \in S_{2}}{\operatorname{Arg} \max } u_{1} u_{2}$. By assumption, S_{2} is non-empty, compact and convex, which guarantees existence of the maximizers. Uniqueness is obtained from the convexity assumption. By $(A 1)$, choose u_{1}, u_{2} such that $\left(u_{1}^{*}, u_{2}^{*}\right)=\left(u^{*}, u^{*}\right)$ lies on the 45° line (normalization of the utility functions).

[^0]

Figure 1: Graphical transformation used in Nash's proof

Notice that every point of S_{2} is such that $u_{1}+u_{2} \leq 2 u^{* 3}$. Let B be a square, symmetric relative to the 45° line, one side of which is supported by $u_{1}+u_{2}=2 u^{*}$, that includes S (of course, it is not unique). It exists since S is bounded. Then by $(A 2), f(B, O)$ is located on the 45° line. By $(A 4), f(B, O)=\left(u^{*}, u^{*}\right)$. By ($\left.A 3\right)$, $f(S, O)=f(B, O)$. Hence, given the normalizations performed, $f(S, d)$ is located at $\left(u^{*}, u^{*}\right)$. Remarkably, it can be proved that uniqueness of the bargaining solution cannot be obtained with a proper subset of these four axioms.

[^1]
[^0]: ${ }^{1}$ In what follows, we are only interested in situations where two agents bargain.
 ${ }^{2}$ Remark that if requirement $(A 2)$ were dropped, then there is a continuum of solutions:

 $$
 f_{\theta}(S, d)=\underset{s_{1} \geq d_{1}, s_{2} \geq d_{2}}{\operatorname{Arg} \max }\left(s_{1}-d_{1}\right)^{\theta}\left(s_{2}-d_{2}\right)^{(1-\theta)}
 $$

[^1]: ${ }^{3}$ Suppose that there exists a point $M=\left(u_{1}, u_{2}\right) \in S_{2}$ such that $u_{1}+u_{2}>2 u^{*}$. Then, there exists a point between M and $N=\left(u^{*}, u^{*}\right)$ that belongs to S, for which $u_{1} u_{2}>u^{* 2}$ (by convexity of S_{2}).

